A Forecasting Methodology Using Support Vector Regression and Dynamic Feature Selection
نویسندگان
چکیده
Various techniques have been proposed to forecast a given time series. Models from the ARIMA family have been successfully used, as well as regression approaches based on e.g. linear, non-linear regression, neural networks, and Support Vector Regression. What makes the difference in many real-world applications, however, is not the technique but an appropriate forecasting methodology. Here, we propose such a methodology for the regression-based forecasting approach. A hybrid system is presented that iteratively selects the most relevant features and constructs the regression model optimizing its parameters dynamically. We develop a particular technique for feature selection as well as for model construction. The methodology, however, is a generic one providing the opportunity to employ alternative approaches within our framework. The application to several time series underlines its usefulness.
منابع مشابه
Tehran Stock Price Modeling and Forecasting Using Support Vector Regression (SVR) and Its Comparison with the Classic Model ARIMA
متن کامل
Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملDevelopment of a Pharmacogenomics Model based on Support Vector Regression with Optimal Features Selection Approach to Determine the Initial Therapeutic Dose of Warfarin Anticoagulant Drug
Introduction: Using artificial intelligence tools in pharmacogenomics is one of the latest bioinformatics research fields. One of the most important drugs that determining its initial therapeutic dose is difficult is the anticoagulant warfarin. Warfarin is an oral anticoagulant that, due to its narrow therapeutic window and complex interrelationships of individual factors, the selection of its ...
متن کاملDevelopment of a Pharmacogenomics Model based on Support Vector Regression with Optimal Features Selection Approach to Determine the Initial Therapeutic Dose of Warfarin Anticoagulant Drug
Introduction: Using artificial intelligence tools in pharmacogenomics is one of the latest bioinformatics research fields. One of the most important drugs that determining its initial therapeutic dose is difficult is the anticoagulant warfarin. Warfarin is an oral anticoagulant that, due to its narrow therapeutic window and complex interrelationships of individual factors, the selection of its ...
متن کاملIdentifying Effective Features and Classifiers for Short Term Rainfall Forecast Using Rough Sets Maximum Frequency Weighted Feature Reduction Technique
Precise rainfall forecasting is a common challenge across the globe in meteorological predictions. As rainfall forecasting involves rather complex dynamic parameters, an increasing demand for novel approaches to improve the forecasting accuracy has heightened. Recently, Rough Set Theory (RST) has attracted a wide variety of scientific applications and is extensively adopted in decision support ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JIKM
دوره 5 شماره
صفحات -
تاریخ انتشار 2006